Homework \#5 (100 points) - Show all work on the following problems: (Grading rubric: Solid attempt $=50 \%$ credit, Correct approach but errors $=75 \%$ credit, Correct original solution $=100 \%$ credit, Copy of online solutions $=0 \%$ credit)

Problem 1 (20 points): Derive the exact reflection and transmission coefficients R and T for normal incidence of light on an interface between two materials, without assuming that $\mu_{1}=\mu_{2}=\mu_{0}$. Express your answer in terms of $\beta=\frac{\mu_{1} v_{1}}{\mu_{2} v_{2}}=\frac{\mu_{1} n_{2}}{\mu_{2} n_{1}}$. Explicitly show that $\mathrm{R}+\mathrm{T}=1$.

Problem 2 ($\mathbf{3 0}$ points): Construct a graph like the one in Fig. 9.16 for the case of an electromagnetic wave incident from vacuum into diamond, which has an index of refraction $\mathrm{n}=2.42$. Assume that $\mu_{1}=\mu_{2}=\mu_{0}$.

3a (5 points): Calculate the numerical values for the amplitudes $E_{O R}$ and $E_{O T}$ at normal incidence, using the convention of negative amplitude values to indicate if one of the waves is out of phase with the incident wave.

3b (5 points): Calculate Brewster's angle.
3c (10 points): Calculate the crossover angle, where $E_{\text {оR }}=E_{\text {от }}$.
3d (10 points): Draw the graph!

Problem 3 (50 points): We have worked exclusively with plane wave solutions so far. However, for point sources of electromagnetic radiation, a more natural solution is a spherical wave. In this case, the real electric field can be written (with $\frac{\omega}{k}=c$):

$$
\vec{E}(r, \theta, \phi, t)=A \frac{\sin \theta}{r}\left[\cos (k r-\omega t)-\frac{1}{k r} \sin (k r-\omega t)\right] \hat{\phi}
$$

For notational convenience, you might wish to write this in the following shorthand form:

$$
\vec{E}(r, \theta, \phi, t)=A \frac{\sin \theta}{r}\left[\cos u-\frac{1}{k r} \sin u\right] \hat{\phi}
$$

If you write it like this, be careful to remember the r and t dependence of u when you take derivatives!

3a (25 points): Plug this electric field into Faraday's law, and integrate with respect to time to find the corresponding magnetic field.

3b (25 points): Calculate the magnitude and direction of the corresponding timedependent Poynting vector, and then average it over a full cycle of the wave to find the average energy flux (which is the intensity I).

